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1.0 INTRODUCTION

An accurate, standalone, preliminary Nuclear Thermal Propulsion (NTP) engine system
design analysis tool is required to support current and future Space Exploration Initiative (SEI)
propulsion and vehicle design studies. Currently available NTP engine design models are those
developed during the NERVA program in the 1960s and early 1970s and are highly unique to that
design (see Ref. 1-1) or are modifications of current liquid propulsion system design models. To
date, NTP engine-based liquid design models lack integrated design of key NTP engine design
features, such as in the areas of reactor, shielding, multi-propellant capability, and multi-redundant
pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a
robust, verified NTP analysis design tool could be of great use to the community.

This effort developed an accurate, versatile NTP engine system design analysis program
(tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and
future engine system and stage design study efforts. In this effort, Science Applications
International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation
(ELES) program was modified extensively to include Westinghouse Electric Corporation's near-
term solid-core reactor design model. The ELES program has extensive capability to conduct
preliminary system design analysis of liquid rocket systems and vehicles. The program is modular
in nature and is versatile in terms of modeling state-of-the-art component and system options as
discussed in Refs. 1-2 and 1-3. The Westinghouse reactor design model, which was integrated in
the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept
(see Ref. 1-4).

This program is now capable of accurately modeling (characterizing) a complete near-term
solid-core NTP engine system in great detail, for a number of design options, in an efficient
manner. The following discussion summarizes the overall analysis methodology, key
assumptions, and capabilities associated with the NESS, presents an example problem, and
compares the results to related NTP engine system designs. Initial installation instructions and
program disks are in Volume 2 of the NESS Program User's Guide.
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2.0 ENGINE SYSTEM MODEL

This section discusses the overall NTP engine system design and performance prediction
methodology and the unique model input options associated with NESS. To better understand the
operation with NESS it is important that the operator be familiar with the ELES program which is
discussed in detail in Refs. 1-2 and 2-1.

2.1  Overall Analysis Methodology

The NESS flow logic is essentially the same as the ELES logic detailed in the ELES
Programmer's Manual, Ref. 1-3. A simple summary of the analysis procedure is shown in Figure
2-1, and a detailed flow chart is given in Figure 2-2. Many portions of the code are iterated two or
more times to improve accuracy. The key inputs include the thrust level, FVAC and engine cycle
type, KCYCLE=1 for gas generator (GG) or =3 for expander (cycle 2 is not available at this time).
Also important are the chamber pressure and temperature, PC and TCHAMBER, respectively,
flow paths (bypass fractions NFF and BYPTUR), nozzle configuration, NOZTYP and KOOLNZ,
and the number of propellant feed legs, NTPA.

Once an input file has been formulated and read in by NESS, the first step is to initialize
propellant properties from the libraries of propellant data stored in the code. These properties will
be recalculated at many different code locations and for many different conditions throughout code
execution. The ideal performance is initially estimated based on known chamber pressure and
temperature, and nozzle area ratio; the boundary layer and divergence efficiencies are calculated at
this time and an estimated delivered specific impulse (Isp) is found. This estimate is used to
calculate a reactor flowrate. The nozzle heat load is estimated as 1% of total reactor power, and
this heat load, Isp, and flowrate are passed to the reactor design portion of the code, ENABLER,
for calculation of reactor fuel and overall operating characteristics.

The reactor inlet pressure and temperature are now used to calculate the cycle pressure
schedule. During the pressure calculations, the nozzle barrier cooling requirement is also
calculated along with the regen cooling requirements. Now that all engine efficiencies are known,
the actual delivered Isp and flowrate are calculated. The actual nozzle heat load is compared with
the original estimate and if they are not within 10%, the code loops back to the reactor design
portion of the code and repeats all steps up to the point this comparison is made. If the nozzle heat
loads are reasonably matched, but the reactor design has only been performed once, the code loops
back to the reactor design with the newly calculated Isp and flowrate to improve accuracy.

2-1
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After the reactor design, performance, and pressure schedule have been completed
satisfactorily, the code now calculates all cycle flowrates. Tankage volumes, pressures,
temperatures, and pressurization requirements are calculated next. The temperature schedule is
determined, and the turbomachinery can now be analyzed. The turbopump assembly (TPA)
portion of the code calculates the size and performance of the pumps and turbines, and checks for
cycle balance by comparing pump required horsepower to the turbine delivered horsepower; if not
balanced, a new turbine pressure ratio is calculated and the TPA design process is repeated.

Once the TPA design has been completed, the flowrate and temperature schedules are then
recalculated to improve accuracy. Next, component weight calculations for the reactor, turbo-
machinery, nozzle, and all miscellaneous parts (lines, valves, etc) are performed. Mass flowrates
are calculated one more time, overall engine dimensions are found, and finally, output summaries
are printed out. When the double run option is selected (see Section 2.3.1), the entire design
process is completed for an engine at reduced thrust level and then a second iteration of the entire
design at full thrust level is performed beginning with the reactor module using some of the values
calculated in the first pass (TPA parameters and some weights).

Flow path schematics of the representative NTP expander and gas generator engine cycle
systems are shown in Figure 2-3.

2.2 Major Code Components

Table 2-1 lists the major code subsystem modules along with key flags and input variables.
Each of these subsystems is discussed in further detail in the sections following, including both
overall discussion of the module and how to determine the inputs required.

2.2.1 Engine Performance

Engine performance calculations begin with an ideal one-dimensional equilibrium (ODE)
performance value that is later degraded with loss multipliers. The ideal values for Isp and
characteristic velocity (C*) are calculated by the ODE module of the Two-Dimensional Kinetic
Reference Program (TDK), Ref. 2-1, as a function of chamber pressure, temperature, and nozzle
area ratio. Tables of hydrogen performance data are stored in the subroutine HYDROGEN along
with the curve-fit equations used to calculate ideal C*, which is a function of temperature and
pressure only. An ideal Isp at desired condition- is interpolated from these tables. To run the code
with a propellant other than hydrogen, ODE (o1 a similar code) must be run to generate the tables
of Isp data and the C* equations. This data is then put into a new subroutine that is called by the
rest of the code when appropriate.
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Table 2-1. Key NESS Flags and Input Variables

Module VYariable Value Results

General Input:
Cycle Type KCYCLE =1 Gas Generator Cycle

=3 Expander Cycle
Thrust Level FVAC - Set thrust level
Chamber Pressure PC - Set pressure
Chamber Temperature TCHAMBER - Set temperature
Choose double-run? IDBLRUN 0,1 If =1, double-run used
Input burn time? IUSRBRN 0,1 If =1, input burn time
User-defined TPA? ISTSET 0,1 If =1, input TPA values
Nozzle:
Exit area ratio EPS - Set exit area ratio
Use extension? KEXNOZ 0,1 If =1, use extension
Use 3-portion nozzle? NOZTYP 0,1 If =1, use 3-portion nozzle
Attach area ratio 1 EPSATT - Set ext. attach area ratio
Attach area ratio 2 EPSAT2 - Set 2nd ext attach area ratio
Nozzle cooling KOOLNZ =2 Regen cooling of nozzle ext.

=3 Trans-regen cooling

=4 Radiation cooling

=5 Film cooling (GG cycle only)
Regen Cooling:
Turbine Bypass Ratio BYPTUR - Set turbine bypass flow
Barrier Temp. Fraction DIFTBF - Set barrier temperature
Reactor:
Fuel Type FTYPE =1 Graphite fuel

=2 Composite fuel

=3 Carbide fuel
Support Pattern SPAT =21 Set support patiern

=31
=6:1

Nozzle Flow Percent NFF _ Set nozzle/tie tube flows
Tankage:
Tank Type NCTNK =0 Tandem tankage

=1 Non-conventional tankage
Pressurization Method KGASFL =0 Cold helium or solid GG

=1 Autogenous
Turbopump Assembly:
Pump Configuration JCNFIG =1 Gearbox

=2 Single shaft TPA

=3 Twin TPA in series

=4 Twin TPA in parallel

=5 Multiple feed leg TPA
Use Boost Pumps? JBPFL 0,1 If =1, use fuel boost pump
Number of Feed Legs NTPA - Set number of TPA feed legs




The loss multipliers used to degrade the ideal performance are calculated using standard
JANNAF procedures, Ref. 2-2, or Aerojet-derived methods, Ref. 1-2. It is assumed that the
reactor itself has no losses, and therefore engine efficiency is determined by nozzle-related factors.
The efficiencies (or losses) calculated by NESS are the nozzle boundary layer efficiency,
divergence efficiency, and nozzle barrier cooling efficiency. The gas generator bleed efficiency is
calculated when applicable. A thorough explanation of these efficiencies is given in the ELES
Technical Information Manual, Ref. 1-2, and the key equations are summarized below.

The boundary layer loss equation was developed by Aerojet as a result of their experience
in defining this loss. The equation is as follows:

ETABL = 0.997 - (In(EPS)/100)*[1.-0.065*1n(0.01*Pc*Fvac)+
0.001*(In(0.01*Pc*Fvac))2]

where EPS = Nozzle Exit Area Rato
Pc = Chamber Pressure (psia)
Fvac = Vacuum Delivered Thrust (1bf)

This equation is accurate for engines with a radiation or film cooled nozzle, but does not
take into account the energy returned to the core flow by a regen-cooled nozzle. In this case, the
energy lost by the nozzle is retained by the regen coolant flow and fed back into the engine, and
therefore should not be considered a true loss. A nozzle that is completely regen cooled should
have a boundary later efficiency of 1.0, while a partially regen-cooled nozzle, as is typically used,
should have an ETABL less than 1.0, but higher than that predicted by the above equation. To
provide accurate modeling of the regen-cooled nozzle option, an input adjustment factor, ADJBL,
is applied to the efficiency calculated by the above equation. The adjustment factor is applied as:

ETABL = 1.0- (1.0 - ETABL)*ADJBL

The current value used for ADJBL of 0.2 (code default = 1.0) was determined by
comparison with Rocketdyne performance values, see Ref. 2-3, which were calculated in much
greater detail than is possible with NESS.

The divergence loss is a function of nozzle shape and was derived as curve-fits of the
information presented in Appendix A of the CPIA document No. 178, see Ref. 2-4. The equations
are as follows:



For conical nozzles:
ETADIV =0.5 + cos(alpha)/2. alpha = half angle in deg.

For RAO contour nozzles:

ETADIV = 1.0 - (1. - C)*[(1.75-RATMLR)/0.75)]1-7  for RATMLR <= 1.75

or
ETADIV=1.0 for RATMLR > 1.75
where
C = constant =0.945 + 0.01*In(EPS) for EPS <= 20
= 0.958 + 0.00566*In(EPS) for EPS > 20

EPS = Nozzle Area Ratio
RATMLR = ratio of nozzle length to the length of a minimum length RAO nozzle;
an input

The divergence efficiency can also be adjusted, if desired, with the input factor ADJDIV
used as:

ETADIV = 1.0- (1.0 - ETADIV)*ADJDIV

The barrier cooling loss is a function of the amount of cold fluid needed to maintain the

- nozzle wall temperature below the maximum allowable for the material used. Acrojet chose a

' simplified barrier cooling loss routine consisting of a stream tube analysis which flow-averages the
performance of the core stream tube with that of the barrier stream tube. The procedure for
calculating stream tube flow areas and flow rates is detailed in the ELES Technical Manual, Ref.
1-2. The maximum barrier temperature is input as described in section 2.2.2, and is used to
calculate barrier Isp and C*, and ultimately barrier mass flux. The fraction of fuel used for barrier
film cooling (FFFC) is calculated as:

FFFC = barrier flowrate/(barrier flowrate + core flowrate)

The barrier loss (ETABAR) is set at 0.95 and is put into the comprehensive barrier cooling
loss equation:

ETAMRD = [(Isp*mdot)core + (Isp*mdo*ETABAR)barrierl/(Isp*mdot)total

where all Isp’s are ideal.
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This efficiency can be adjusted by the input ADJMRD in the same form as that used for the
boundary layer and divergence losses. Note that the "barrier cooling loss" is referred to as the
"mixture ratio maldistribution loss" in the ELES manuals.

For gas generator cycles, the gas generator bleed efficiency is calculated as a function of the
bleed nozzle flowrate, pressure, and area ratio. It can be adjusted with ADJGGB in the form:

ETAGGB = ETAGGB * ADJGGB

All other efficiencies described in the ELES Technical Manual, Ref. 1-2, were set equal to
1.0 because of their inapplicability to the nuclear engine; for example, injector or fuel and oxidizer

mixing efficiencies.
2.2.2 Nozzle Cooling

The nozzle can be cooled by a number of methods. The converging portion of the nozzle,
including the throat, is automatically regen cooled. It is of milled slot construction to upstream area
ratio of 4 with an adapter of regen tubes connecting the nozzle to the reactor. The remainder of the
nozzle is cooled by regen tubes, radiation, a cold film of turbine exhaust (GG cycles only), or by a
combination of these. A detailed explanation of regen cooling calculations is given in the ELES
Technical Information Manual, Ref. 1-2, and Section 2.2.3 of this report gives nozzle modeling

options.

The nozzle regen cooling requirements are based on the nozzle wall material properties,
chamber temperature, regen coolant flowrate, regen inlet temperature and pressure, and regen
channel size. The maximum wall material temperature in input as TGWNOM and is the
temperature above which the material will begin to degrade. For copper, a common converging
nozzle material, this maximum temperature is 1460°R. The 1460°R temperature limit is typical of
that used for the maximum design nozzle wall temperature for the Space Shuttle Main Engine
(SSME) which is made of NARLOY-Z, a copper alloy, Ref. 2-5. For the high chamber
temperatures typical of nuclear reactors, the regen coolant is unable to maintain this max wall
temperature if the fluid on the other side of the wall is at chamber temperature. Therefore, a small
amount of cool fluid from the regen outlet is dumped into the chamber at the top of the converging
nozzle and is used to form a cool barrier between the wall and the hot core fluid. The loss in
efficiency due to this barrier cooling is detailed in the Section 2.2.1 and in the ELES Technical
Manual, Ref. 1-2. The greater the temperature mismatch between the barrier fluid and the core
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fluid. the larger the cooling loss, and therefore the highest possible barrier fluid temperature should
be ct.osen that can still maintain the required material wall temperature. The barrier temperature is
input as a relation between the core temperature and max wall temperature, TGWNOM. The input
variable DIFTBF is used as follows:

Toarrier = TGWNOM + DIFTBF*(T¢gre - TGWNOM)

Ideally, DIFTBF = 1.0 and the barrier temperature equals the core temperature to minimize
flow losses. If DIFTBF = 0.0, the barrier temperature is set equal to the maximum wall
temperature. For a copper wall with max temperature 1460°R and a core temperature of 4860°R
(2700 K), the maximum barrier temperature that could still maintain the required wall temperature
is 1630°R, which means the input DIFTBF = 0.05. A good value for DIFTBF can really only be
determined by past experience and trial and error; the larger the difference between the maximum
wall temperature and the core temperature, the lower the value for DIFTBF will have to be.

Other key regen cooling inputs include the gas wall material thermal conductivity and
minimum gauge. The land width (WLTHR) and channel width (WTHR) of the regen cooling
channels at the throat are also important inputs because they will strongly affect the regen pressure
drop, i.e. small channels => high velocity => large delta P. There is also an option for user-input
regen pressure and temperature drops, initiated with the flag INDPDT set equal to 1 and DELTAT
and DELTAP input.

2.2.3 Nozzle Design Modeling Options

The user has a number of different nozzle modeling options. The most basic option is to
set the nozzle extension flag KEXNOZ to zero and have regen slots all the way out to the exit area
ratio EPS. This type of nozzle is almost never used in practice because of excess weight, and
therefore a nozzle extension option is allowed. If the nozzle type flag NOZTYP is set to zero and
KEXNOZ = 1, an extension will be added to the regen slots. This section extends from area ratio
EPSATT to EPS, and can be regen, radiation, or film cooled (GG cycles only), with cooling
option selected with the variable KOOLNZ. The new and final option is for NOZTYP=1, which
models a three-section nozzle made up of regen slots, regen tubes, and a radiation cooled
extension. The user must set KEXNOZ = 1, KOOLNZ = 2 (regen tubes in portion 2), and area
ratios EPS, EPSATT (attach point of second section) and EPSAT?2 (attach point of third section).
Figure 2-4 shows the three nozzle modeling options and key input variables.

2-10
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The regen slot portion of the nozzle extends out to an upstream area ratio of 4 where it
attaches to a nozzle/reactor adapter that is made of aluminum regen tubes covered by a load-bearing
casing of aluminum. The weight of this assembly is calculated in the reactor weight subroutine,
and is included in the reactor pressure vessel weight.

Material density and strength are input for the converging nozzle, first nozzle extension,
and second nozzle extension with RHCSTR, RHONZE, RHONZ2 and SIGCHM, SIGNZE,
SIGNZ2, respectively. The minimum thicknesses of the two possible extensions are input as
TNZMIN and TNZMN2. The volume of material used for the regen slots is calculated and the
total converging nozzle weight is a function of this volume, the density of the material used for
each region of the slots, and total surface area. The weight of the regen tubes is a function of the
maximum pressure in the tubes, surface area, and material density, strength, and minimum gauge.
The radiation-cooled extension weight is simply a function of surface area and material density and
thickness.

2.2.4 Reactor

A near-term solid core, ENABLER reactor module was developed by Westinghouse and
integrated with ELES to form NESS. The reactor design is made up of two segments: the first
calculates fuel requirements and reactor operating conditions, the second calculates about 30 reactor
component weights along with key reactor dimensions. NESS provides hydrogen data, Isp, core
flowrate, and nozzle heat load to the reactor module (ENABLER) for its calculations. In return,
ENABLER provides the reactor inlet and tie tube outlet conditions needed for pressure and temp-
erature schedule analysis. A detailed discussion of the reactor model can be found in Section 3.

One key reactor input is the nozzle flow fraction, NFF, which determines the percentage of
flow going to the tie tubes and to regen cooling. The user also selects the fuel type as either
graphite, composite, or carbide using the variable FTYPE. SPAT is used to select the support
pattern as 2:1, 3:1, or 6:1. The reactor temperature is input as TCHAMBER, and is used
extensively in the reactor design process, along with determining the overall engine performance.
As can be seen in the worksheet, the user can input a number of variables related to heat pickup in
various sections of the reactor, as well as several fuel element characteristics.



2.2.5 Auxiliary Components

The category “"auxiliary components" consists of instrumentation, a pneumatic supply
system, thrust structure, gimbal, and reactor cooldown assembly. Previously in ELES, some of
these component weights were calculated as a percentage of the total engine weight, some were a
function of thrust only, and some were not calculated at all. Also, these weights were originally
calculated assuming a standard liquid rocket engine rather than a nuclear rocket engine.

NESS auxiliary component weights are based on work previously performed by TRW,
Ref. 1-1, which includes equations for various nuclear rocket engine auxiliary component weights.
These correlations relating component weight to reactor power were developed as curve fits of
NERVA-type reactor data. The TRW equations applicable to the ENABLER-type rocket engine
design have been programmed into NESS and include:

Instrumentation: weight = 166.9 + 0.00743*P - 1.64E-7*P2
Pneumatic Supply System: weight = 751.6 - 0.00208*P + 2.35E-6*P2
Reactor Cooldown Assembly: weight = 238.1 + 0.0254*P - 8.04E-7*P2
Upper Thrust Structure: weight = 786.25 = 0.1868*P + 5.2E-5%P2
Lower Thrust Structure: weight = 492.9 + 0.0911*P + 1.463E-6*P2

where P = power in MW

The upper and lower thrust structures are combined into the "thrust mount” weight. The
other three weights make up the "support hardware weight".

Although these equations provide a useful starting point for auxiliary component weight
calculations, they represent NERVA-era technology rather than state-of-the-art designs. To
account for advances in technology, weight multipliers are input that decrease these weights to
values more in line with current engine designs. The instrumentation multiplier, CXWINST, is
left at 1.0. The pneumatic supply system weight was compared with similar system weights on
current engines, such as the SSME, and was found to be extremely high, see Refs. 2-5 and 2-6. It
should be noted that the TRW pneumatic supply system weight correlations assume that the
complete pneumatic supply is part of the NTP engine system, while for the SSME the main supply
is located in the Space Shuttle. This is one major contributor to the weight difference as well as the
higher pressure and lighter weight components associated with today's systems. Therefore, the
pneumatic system weight multiplier, CXWPNEU, is input as 0.25. The reactor cooldown
assembly multiplier, CXWTNKAS, is input as 0.9 to account for technology advances. The thrust
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structure multiplier, CXWTHM, is set to 0.9 to allow for lighter weight materials and improved
technology. If NERVA-era technology is desired, all above multipliers should be input as 1.0.

2.2.6 Materials of Construction

The NESS user is allowed to select the material of construction of all major subsystem
components. Standard library tank materials include 6061-T6 aluminum and 6AI1-4V titanium, or
the user may input density, strength, and minimum gauge for a previously undefined material. A
discussion/comparison of candidate cryogenic tank materials is given in the ELES Technical
Information Manual, Ref. 1-2. The input worksheet includes a table of the most common engine
materials along with their densities and strengths. This data is typically used for valves, nozzles,
lines, and regen channels, and the user may input data for any unlisted material desired. The
nozzle designs also require input of minimum material thicknesses. The turbine blade strength and
density, as well as an overall TPA density that is used in pump and turbine weight calculations, can
also be input.

2.2.7 Tankage

The main tankage options in NESS are either tandem tankage, in which fuel and oxidizer
are stacked on top of each other to fit within a common shroud, or non-conventional tankage,
where the user selects the number of tanks as well as their shapes and placement on the stage. The
tandem tanks option should probably not be used for nuclear thermal rockets because they use only
hydrogen as propellant, and may carry only a very small amount of oxidizer for use with a gas
generator. The tandem tank model automatically calculates an oxidizer tank weight even if the
amount of oxidizer carried is very small or zero, and this tank is sized to fit in the tank shroud with
a diameter based on the size of the large fuel tank. The non-conventional tankage design option
should give a better estimate of actual tank sizes.

The tank sizes for both tank geometries are dependent on amount of burned propellant,
ullage fractions, acquisition system design, residual propellant, propellant boiloff, and autogenous
pressurization. The approach taken in sizing the propellant tanks is as follows:

1) Amount of fuel burned is input; calculate amount of oxidizer burned in GG if
necessary.

2) Add weight of autogenous pressurization requirements to each propellant
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3) Calculate the tank free volumes using the propellant densities and ullage fractions

4) Calculate propellant residuals and acquisition device volumetric displacement based on
tank free volume estimate

5) Calculate tank surface area as needed for heat transfer calculations to determine
propellant boiloff

6) Total tank volume is now calculated as the sum of the above volumes: burnt propellant,
ullage, residuals, boiloff, autogenous pressurant, and acquisition devices

These tank volumes are now used to determine pressurization requirements and update

initial estimates.

The large variety of possible tandem tank configurations is shown in the ELES Technical
Information Manual, Ref. 1-2, along with the equations used to calculate many of the tank
dimensions and volumes. All tanks can be cylindrical, spherical, or elliptical (CSE tanks), and the
non-conventional tankage option allows toroidal tanks as well. Non-conventional tank weights are
calculated from an ideal tank weight through the use of a tank non-optimum factor, which is
defined as the ratio of actual tank mass to ideal tank mass. The ideal tank mass is based on tank
wall thickness and size. The actual mass includes any additional material required for weld lands
and fittings. For conventional tanks that require feedlines, supports, pressurization, and a
propellant management device, a tank non-optimum factor of 1.7 is suggested. Different factors
are recommended for different tank types, and these factors are listed in Table 7.3.1.1 of the ELES
Technical Manual, Ref. 1-2. The tank non-optimum factor is input as the variable CXWTNK.

When preparing inputs for tankage design, the user must first set the variable NCTNK
equal to either O for tandem tanks or 1 for non-conventional tanks. If tandem tanks are chosen, the
user now determines such factors as arrangement of propellant (fuel forward or aft, etc), common
or separate dome tanks, monocoque or suspended arrangement, tank head ellipse ratio, tank dome
orientation, safety factor (SFFLTK, SFOXTK, SFPRTK), and tank material (MTNKFL,
MTNKOX, MATPT).

To use the non-conventional tank option, the user should first sketch the arrangement of
tanks and engines on the stage. The total number of non-conventional tanks is input with
NTANKS (includes oxidizer, fuel, and pressurant). The type of fluid contained within each tank
is input with the variable INTNK1-4, where an input of 1 is for oxidizer tanks, 2 is fuel, 3 is
pressurant. For example, if two oxidizer and two fuel tanks are desired, input INTNK1 =
1,2,1,2. This indicates that tanks 1 and 3 are oxidizer tanks, and tanks 2 and 4 are fuel tanks;
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retain this same numbering scheme when defining the remaining tank parameters. Input the tank
ellipse ratio for each tank with ELTNK1-4. The tank type is selected as either CSE or torus with
the variable KTANK1-4. The angular location of each tank gives its relative position on the stage
and is input as TANGL1-4. Tank radial location indicates the tank distance from the center of the
stage, RADLOI1 = 4*1.0 places all four tanks at the edge of the stage and RADLOI1 = 0. places a
tank at the center of the stage. Engine angular and radial locations are input similarly with the
variables ENGAN1-4 and ENGRD1-4. The material for each tank is selected with the variable
MATNKI-4. Tank safety factors are input with SFTNK1-4, and tank weight multipliers are input
with CXNCT1-4. More input variables for each tank geometry are contained in the worksheet.

The forward and aft skirt length inputs are actually input as fractions of tank lengths. For
tandem tankage, both aft and forward skirt lengths should be input as 1.0 to form a skirt fully
covering both tanks. To shroud non-conventional tankage, the forward skirt should be set to 0.0
and the aft skirt length should be 1.0. This will yield a skirt that covers all tankage and is as long
as the tallest non-conventional tank. DMOTOR is used to input the stage diameter.

2.2.7.1 Tank Heat Transfer. For the long duration missions proposed for nuclear rockets,
tank heat transfer and insulation are important aspects of vehicle design. A detailed discussion of
this area is provided in the ELES Technical Information Manual, Ref. 1-2, and includes
information on optimizing insulation thicknesses.

NESS offers four possible tank heat transfer scenarios: ignore tank heat transfer, external
boundary exposed to conductive source, worst case solar radiation, and ground hold ice formation.
The desired option is selected with the variable KHXOPT. The most common options are either to
ignore heat transfer (when tank design is not important) or worst case solar radiation. The solar
radiation option requires input of insulation characteristics, space hold time, flight time, average
orbital distance from earth, and earth and solar heat flux parameters. The insulation is typically
composed of a layer of spray-on foam insulation (SOFI) plus a multi-layer insulation (MLI)
blanket. The density, thermal conductivity, and thickness of each type can be input. Table 2-2
lists these values for a variety of types of MLI.

2.2.7.2 Propellant Tank Pressurization. Propellant tanks can be pressurized by cold
helium gas, a solid gas generator, or autogenously. The method of pressurization is selected with
the variables KGAS, KGASFL, and KGASOX as shown in the worksheet. The selection of a
propellant acquisition device, either some sort of bladder or surface tension device, has a strong
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effect on the pressurization calculations. An extremely detailed discussion of tank pressurization is
presented in the ELES Technical Information Manual, Ref. 1-2.

Table 2-2. Multi-Layer Insulation Data Comparison

!V[LI ) No. h!o. K§ Lbm Watts BTU

Configuration (cm) (in) (m3) (ft3) (m-K) (brft°R)
DAM/DBL silk net 19.7 50.0 45.2 2.82 4.5x10°5 | 2.5x10°5
DAM/Tissue glass 39.4 1000 | 519 3.24 2.5x10% | 1.4x103
SAM Crinkled 15.7 40.0 14.6 0.91 4.7x10% | 2.6x10°3
DAM/SGL Nylon Net 31.5 80.0 53.8 3.36 3.0x10% | 1.7x10°
DAM/Dexiglass 23.6 60.0 58.8 3.67 5.0x105 | 2.8x10°5
DAM Crinkled/Tissue glass | 23.6 60.0 31.1 1.94 7.0x105 | 3.9x10°5
Superfloc 11.8 30.0 13.8 0.86 4.5x10-5 | 2.5x10°5

When cold gas pressurization is selected, KGASFL,KGASOX = 0 and KGAS = 2, the
user also inputs the cold helium storage pressure as PICG and the helium tank final pressure
fraction, FPULCG, where a value less than 1.0 indicates a blowdown tank. If KGAS is set equal
to 1 instead of 2, a solid gas generator will be used which requires fairly extensive user inputs
regarding solid fuel characteristics and burn rates (see worksheet). If KGASFL, KGASOX are set
to 1, the tanks will be pressurized autogenously. This option has an advantage over helium
pressurization when the additional weight of the evaporated propellants is less than that of the
helium storage vessel, as occurs in pump fed stages with low NPSH requirements. The propellant
used in autogenous pressurization will be bled off from various points in the flow depending on
the type of cycle being used; this pressurant flow is taken from the turbine exhaust in expander
cycles, and from turbine exhaust and pump outflow (oxidizer side) for the gas generator cycle.

2.2.8 Propellant Pressure/Temperature/Flowrate Schedules

The propellant pressure, temperature, and flowrate are calculated at key points within each
engine cycle. The pressure schedule is calculated "backwards"”, beginning with the chamber
pressure and working back up through the cycle using input and calculated pressure changes. The
temperature and flowrate schedules begin at the tank outlet and flow down through the cycle to the
reactor inlet conditions. ELES can evaluate pressure-fed, gas generator, staged reaction, expander,
and staged combustion cycles, but NESS can handle only expander and gas generator cycles at this
time.
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The expander cycle flow paths are shown in the schematic in Figure 2.3. The tank outflow
is divided into tie tube and regen/reflector flow based on the input flow fraction, NFF. The regen
flow is used to cool both the nozzle and reflector, with a small amount bled off to form a cool
barrier inside the nozzle. The reflector outflow can be either dumped directly into the core or used
to run the turbine. Reflector outflow going to the turbine is mixed with the tie tube flow, and
turbine inlet temperature is calculated as a massflow averaged combination of the tie tube and
reflector flows, i.e.

Trurbine inlet = [(T*mdot)refiector + (T*mdot)iie ubel/ mdotyyrbine inlet

Turbine outflow is dumped into the reactor core, with a small amount bled off for
autogenous pressurization if needed.

The key pressure calculations for the expander cycle are the turbine and reflector outlet
pressures. The reactor inlet pressure and temperature are calculated by the reactor model, and are
therefore known. The tie tube pressure drop is fixed by Westinghouse at 250 psia, and the
reflector pressure drop is 25 psia. The reflector, turbine, and reactor pressures are related by:

(P*mdot)core inlet = (P*mdot)refiector to core + (P *mdot)yrbine to core

Using the relations below, equations for reflector and turbine outlet pressures as functions
of known or estimated quantities only can be derived:

PTURBI, PTURBO = turbine inlet and outlet pressures, respectively
PREFI, PREFO = reflector inlet and outlet pressures, respectively
PTTI, PTTO = tie tube inlet and outlet pressures, respectively
PREGI, PREGO = regen inlet and outlet pressures, respectively

PCI = core inlet pressure

PVLVFO = main valve outlet pressure

TURBPR = turbine pressure ratio

FLOW = reactor flow rate

TTFLOW = tie tube flow rate

WDTRIF,WDTROF = turbine inlet and outlet flow to core, respectively
WDREFT = reflector outflow to turbine

WDBYPF = reflector outflow to core = turbine bypass flow
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PTURBO

PTURBI/TURBPR

(PREFO*WDREFT + PTTO*TTFLOW)/(TURBPR*WDTRIF)
(PCI*FLOW - PREFO*WDBYPF)/WDTROF

PTTO =PTTI - 250

PREFO = PREFI - 25

PTTI = PVLVFO = PREGI

PREFO - PREGI = total delta P = regen delta P - 25 = DELPTOT (regen delta P < 0)

Substitution gives:

PREFO = PCI*TURBPR*WDTRIF*FLOW + (DELPTOT + 250)*TTFLOW*WDTROF
~ WDREFT*WDTROF + TURBPR*WDBYPF*WDTRIF + TTFLOW*WDTROF

PTURBO = (PCI*FLOW - PREFO*WDBYPF/WDTROF

Once the reflector outlet pressure is known, the reflector inlet pressure, which equals the
regen outlet pressure, can be calculated so that the regen cooling analysis can be performed and all
other pressures in the cycle can be calculated. For multiple feed leg TPA designs, the individual
turbine flow rates are multiplied by the number of legs to accurately calculate the pressures. An
estimate for DELPTOT is used on the first of many calls to the pressure schedule routine, and is
later updated after calls to the regen routines.

The gas generator bleed cycle flow schematic shown in Figure 2-3 uses small amounts of
oxidizer and fuel to feed the gas generator that drives the turbine. The turbine exhaust is either
dumped overboard through a small bleed nozzle or is dumped into the main nozzle for film
cooling. Although this exhaust dump results in a performance loss, the GG cycle has the
advantages of relatively simple cycle design (TPA and regen design are not coupled) and lower
pump discharge pressures. Since the turbine is powered by the GG, the reflector and tie tube
flows are dumped directly into the reactor core, which leads to an equation for reflector outlet

pressure of the form:
PREFO = [PCI*FLOW + (DELPTOT + 250)*TTFLOW}/(WDBYPF + TTFLOW)

where all variables are as defined above. As in the expander case, once the reflector outlet pressure
is known, the regen cooling analysis can be performed and all other pressures calculated. At this
time, the gas generator cycle cannot have multiple feed legs.



For all engine cycles, tank outflow is equal to the core flowrate plus the nozzle barrier
flowrate, autogenous pressurant flowrate, and gas generator flow.

2.2.9 Propellant Properties

Propellant properties are required over a very wide range for the variety of models used in
NESS, including both gas and liquid phases. The approach used to obtain these values is to begin
with a known value of the propellant property at some reference point, and then scale that value to
some other condition based on empirical or theoretical correlations. The exceptions to this method
include hydrogen and helium, which require separate, extensive data bases from which desired
values are interpolated. A detailed discussion of the methods used to determine property data can
be found in the ELES Technical Information Manual, Ref. 1-2. Hydrogen data is stored in the
routine H2DATA.

An option exists in ELES that allows for user-defined propellants, which requires that the
user input certain propellant properties and then select a propellant from the existing ELES library
that the new propellant is most similar to. The code next evaluates this new propellant performance
based on comparison with the chosen similar propellant. This option is set up for use by non-
nuclear bipropellant systems, and therefore cannot be used for reactor designs without major code
modification. Hydrogen is currently the only propellant with full performance data tables
programmed into the code, and the current method of determining Isp is different than that used for
bipropellants and may not be compatible with the old user-defined propellant evaluation methods.

2.2.10 Turbopump Assembly

The purpose of the turbopump assembly (TPA) model is to determine the size, weight, and
performance of all pumps and turbines for expander or gas generator cycles. NESS offers the
following turbomachinery configurations:

1. Single turbine driving a gearbox which powers an oxidizer and fuel pump on a
common shaft.

Single turbine driving oxidizer and fuel pumps on a common shaft.
Twin TPA's, series drive fluid flow.
Twin TPA's, parallel drive fluid flow.

Multiple propellant feed leg TPA - each leg is identical and sees 1/NTPA of the flow
(expander only)

woA W
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The desired option is indicated with the input variable JCNFIG. If the multiple feed leg
option is chosen (JCNFIG=5), the number of feed legs is input as NTPA. Boost pumps may be
included in the propellant circuit by setting JBPFL, JBPOX=1, with the boost pump fraction of
total propellant head rise input as BPFRFL, BPFROX.

NESS checks the necessity for pump or turbine staging, allowing up to four stages for
pumps and two for turbines. To avoid unrealistic designs, the code checks the maximum
allowable tip speeds and the turbine blade root stresses. Pump head coefficients and pump and
turbine efficiencies are calculated from tables included in the program. A partial admission turbine
is designed if blade height falls below 0.3 in. The equations used to design the pumps and
turbines are given in the ELES Technical Information Manual, Ref. 1-2.

An engine cycle is considered balanced when the ratio of required pump horsepower to
delivered turbine horsepower is approximately equal to 1.0. If the cycle is not balanced, a new
value for turbine pressure ratio is calculated and the entire design process is repeated.

An important input for expander cycle TPA design is the turbine bypass ratio, BYPTUR,; it
is the ratio of reflector outflow that goes directly to the core divided by the total reflector outflow.
The tie tube flow goes directly to the turbine and is therefore not affected by this bypass. As the
bypass ratio acts only on the reflector flow, the user must be careful when determining this value.
For example, if an overall turbine bypass of 50% is desired and the nozzle flow fraction is 0.70
(30% of flow goes to tie tubes, 70% to nozzle), the turbine bypass ratio BYPTUR is calculated and
input as 0.5/0.7 = 0.71.

The gas generator cycle requires input of the GG mixture ratio, OFGGPB, the ratio of
specific heats, GAMGPB, the specific heat, CPGGPB, and the molecular weight, WMGGPB.
The default values for these variables are for LO2/H2 at approximately 1400 psia. The ratio of
specific heats, specific heat, and molecular weight were determined by a run of the ODE module of
the TDK computer code using the desired pressure and mixture ratio. The user can also input the
turbine outlet pressure, PTURBO, and the pressure ratio across the gas generator/pre-burner,
PBPFR, PBPRO.

The multiple propellant feed leg TPA option (JCNFIG=5) was added to ELES to allow for
the redundancy usually desired in nuclear rocket engines. It is available for the expander cycle
only at this time. Typically, two feed legs will be desired, with one half of the total flow running
through each pump and turbine during normal operation, as can be seen in the expander cycle
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schematic in Figure 2-3. This option is normally used with the double run option as described in
Section 2.3.1. When multiple feed legs are used, the TPA output lists the weight for each pump
and turbine in their corresponding sections, while the TPA summary section lists weights for the

total system.

Another new code option is the evaluation of a user-defined TPA, which is described in
detail in Section 2.3.3. This option allows evaluation of off-design pump and turbine perform-
ance. It is used automatically with the double run option in which turbomachinery is designed at a
pump-out thrust level and then multiple pumps and turbines possessing the previously determined
characteristics are evaluated at full thrust level. The flag to initiate the user-defined TPA design
option is ISTSET = 1, and INPTPA = 1 indicates that TPA-related weights will be input.

2.2.11 Weight Multipliers

Due to the wide range of possible design strategies available for most engine components,
weight multipliers are provided for all major components. These multipliers are useful when trying
to match existing designs or design methods. They are also used to account for excess component
weight not specifically calculated in the code; for example, the standard tank weight multiplier is
1.7 to allow for the extra material required for weld lands and fittings, see Ref. 1-2. Some of these
weight multipliers have been discussed in detail elsewhere in this report; all will be summarized

here.

The weight multipliers are listed in the worksheet along with their default values. All tank-

related multipliers are set to 1.0 as NESS will primarily be used for engine design; the user must
input any desired value other than this default. The total nozzle and hardware multiplier,
'CXWENG, is set to 1.0 as it is more likely that the multipliers for individual components will be
‘used to account for extra weight rather than adjusting the entire engine weight. The valve
multiplier, CXVALY, is set to 2.8 to account for dual valves (for redundancy) and a factor of 1.4
to include some extra valve weights (other than the main valve) not explicitly calculated in NESS.
The convergent nozzle multiplier, CXWCHM, is set to 1.0. CXWNZE is the nozzle extension
multiplier and is used on all portions of the nozzle extension (tubes + radiation-cooled portion
when used); its value of 1.1 allows for flanges and fittings.

Hot gas ducting weight is adjusted with CXWDUC that is set to a value of 3.5 to account

for the weight of flanges, bolts, bellows, bosses, insulation, etc. The gimbal system (excluding
the power supply) is multiplied by a factor of 1.4 as set by the variable CXWGIM. The thrust
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mount multiplier CXWTHM is set to 0.9 to allow for technology advances not included in the
NERVA-era weight correlation between thrust structure and reactor power. The gas generator
injector weight is multiplied by 1.4 as input by CXWIGG. Each component of the turbopump
assembly (pumps and turbines) is multiplied by a factor of 1.3 using CXWTPA as was deemed
necessary after comparison with other engine designs. The same reasoning holds for the ignition
system multiplier CXWIGN with a value of 1.3. Engine bay lines are multiplied by 2.5 to allow
for flanges, bolts, bellows, etc. The TPA components, valves, and engine bay lines are all
multiplied automatically by the number of propellant feed legs, NTPA, when appropriate.

The support hardware multipliers, CXWPNEU, CXWINST, and CXWTNKAS, are
discussed in the support hardware section of this report, and reflect the technology advances made
since the correlations used to calculate the component weights were developed.

2.3 New Features

A number of features have been added to the original ELES to more accurately model a

nuclear thermal propulsion system.
2.3.1 Double-Run Option

A typical nuclear propulsion system will include multiple propellant feed legs for
redundancy. Each feed leg will be designed to a desired pump-out thrust level that is less than the
nominal operating value. To accurately model this feature, a computer run would have to be made
at this reduced thrust level to design/size a single pump and turbine for these conditions, and then
these values would be used for a second run at full thrust level with multiple pumps to determine
nominal operating conditions. To simplify this process, a double-run option is available for the
expander cycle. The first pass through the code designs a single shaft turbopump that operates at a
reduced thrust level (pump-out conditions) specified by the user. The second pass automatically
assigns the pump and turbine parameters calculated by the first run to be inputs for the user-defined
TPA option. The valve and engine bay line weights from the first run are also retained to be output
with the total engine summary. The second pass will design a system using an input number of
identical propellant feed legs, each with characteristics as calculated in the first pass.

To utilize this option, the input file must contain IDBLRUN = 1 and a corresponding thrust

level fraction FFRAC (default = 0.8, or 80% thrust level). The user must set the pump
configuration flag to the single shaft option, or JCNFIG = 2; the code automatically sets JCNFIG

2-23



=5 and assigns the pump and turbine parameters calculated in the first pass to the appropriate user-
defined TPA variables for the second pass. In the input file, the user specifies the number of
identical feed legs to be used for the second pass as NTPA.

2.3.2 User-Defined Engine Burn Time

An option has been added which allows the user to input the engine burn time rather than
have the code calculate the burn time based on flowrates and input amount of propellant. This
option is useful when the amount of propellant to be used is unknown or the tankage design is not
important. This burn time is used mainly to size the gimbal power supply, whose weight is time-
dependent. To use this option, set the flag IUSRBRN equal to 1 and then input burn time in
seconds as TUSRBRN.

2.3.3 User-Defined Turbomachinery

The user-defined turbomachinery option of NESS allows evaluation of pump and turbine
performance at off-design operating characteristics and with a variety of propellants. The
parameters input to define the TPA for off-design evaluation are detailed in the worksheets
following, and include number of stages for all pumps and turbines, pump and turbine diameters,
turbine annulus area, turbine admission fraction, and various gas generator parameters.

NESS calculates pump head rise and volumetric flowrate, and turbine horsepower, mass
flowrate, and pressure ratio based on cycle balance requirements. Using these values, the pump
rpm is calculated as a function of input pump diameter. To perform this calculation, a correlation
had to be developed for pump head coefficient as a function of specific speed (standard cases
interpolate this coefficient from a data table), and is of the form:

HC = const * SS*
where
HC = head coefficient
SS = pump specific speed

For example, the main pump correlation is:

HC = 3.7852 * $5-0-28786
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This correlation is different for main pumps and boost pumps. The specific speed is a
function of pump rpm, head rise, and volumetric flowrate, as is shown below:

SS = RPM * SQRT(volumetric flowrate)/(pump head rise%.75)
The pump diameter is calculated as:
Dia = (720/pi*RPM) * SQRT(32.2*pump head rise/head coefficient)

Substituting the head coefficient and specific speed equations into the equation for pump
diameter and rearranging gives an equation for pump rpm's as a function of input pump diameter
only. Once the rpm's are known, the specific speed, efficiency, and horsepower are easily found
from the standard ELES equations.

The user-defined TPA option of NESS calculates the required turbine mass flowrate and
horsepower and then evaluates the user input turbine to see how well it performs in meeting these
requirements. The first step is to calculate the isentropic spouting velocity (Co) based on the
number of turbine stages. Now calculate the ratio of turbine blade tangential velocity to Co based
on input turbine diameter (U/Co) and check whether this ratio is within the accepted range of 0.2 -
0.6; if not, print a warning. Next, calculate the turbine inlet mach number and check whether it is
below the accepted maximum value of 1.7; issue a warning if not. Finally, calculate turbine
specific speed, efficiency, and horsepower provided. Compare the horsepower provided with the
horsepower required and if not within 3%, calculate a new turbine pressure ratio and repeat the
entire process.

To use this option, first set the variables ISTSET = 1 and INPTPA=1 to indicate that the
TPA is user-defined and the TPA-related weights will be input. The number of pump stages are
input with PDIAFL and PDIAOX. Turbine stages are input with either TSTGES for a single shaft
turbine, or TSTAGF and TSTAGO for fuel and oxidizer turbines (can be used only for GG
cycles). Diameters are input in inches with PDIAFL and PDIAOX, and either TDIAM or TDIAFL
and TDIAOX. Boost pump diameters can be input with BPDIAF and BPDIAO. Turbines also
need to have admission fraction and annulus area input using the variables listed in the worksheet.
TPA-related weights will not be calculated for the user-defined TPA option and therefore the user
may input these weights for total TPA, TPAWT, start system, WSTART, ignition system,
WIGNIT, hot gas manifolding, WHGMF, autogenous heat exchanger, WTHTX, and gas
generator/preburner, WGGPB. If not input, the weight summaries will list these weights as zero.
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The user-defined gas generator requires many more inputs than are required for the
expander cycle. First set the flag IUSRGG equal to 1 to indicate a user-defined GG and input all
pump and turbine parameters as described above. In order to insure that the GG and turbine are
modeled correctly, the turbine inlet and outlet pressures, PUSRTI and PTURBO, respectively,
must be set to the values calculated/input for the NESS-calculated case. For example, if a NESS-
calculated GG cycle using LOX/H, is designed at 80% thrust level and is next to be evaluated at
50% thrust level, the turbine inlet and outlet pressures calculated by NESS in the first run must be
used as inputs for the user-defined run. The turbine inlet temperature, TUSRTI, should be set to
the actual value found for the propellant combination at given mixture ratio and pressure; normally
this temperature will simply be the same as that found in the 80% run. If a different propellant is to
be evaluated or the GG is being input based on an existing design (not NESS-generated), this
temperature can be found most easily by an initial NESS run where the user-defined option is not
used and the GG is at conditions similar to those to be used for the actual user-defined run. The
turbine flowrate, although listed as an input, is actually calculated by NESS as the correct amount
of fluid flow required for the given operating conditions. The GG bleed flowrate, Isp, and
efficiency can be set to any reasonable values.

2.3.4 Weight Margin

The user may now input a fraction of the total non-nuclear weight to be added in as a
margin weight. Inside the code, non-nuclear weight is the sum of nozzle weight, total TPA
weight, lines, valves, thrust mount, support hardware, and total gimbal system. The percent
(fraction) of this weight to be used as margin is input with FMARG, whose default is 0.02 2%
margin). In the output summary, the "non-nuclear weight" includes the weight margin.

2.4 Code Setup and Execution

NESS is written in FORTRAN 77 and currently resides on a VAX mainframe computer
system. The entire code is made up of four parts: the source code, the executable, the library of
subroutine object files, and a library of propellant performance data. The source code for NESS is
made up of 219 subroutines that have been separated into individual files for easier editing. These
subroutines take up approximately 4000 blocks of storage space. The object library
ELES_LIB.OLB takes up about 5900 blocks of storage space. The propellant performance library
is included with the code, but may not be needed as all hydrogen performance data has been
entered elsewhere in the code; this data file uses 940 blocks of storage. If storage space is a
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problem, the executable alone could be loaded onto the computer to take up about 4400 blocks of
storage, while the rest of the code is left on tape to be loaded as needed.

When loading NESS onto a new computer system, a fairly structured series of directories
must be set up for proper execution. The executable and propellant data file must be put into a
directory called [account name.ELES]. The input files reside in the directory
[account. ELES.INPUT], and the output appears in the directory [account. ELES.OUTPUT]. The
source code and object file library are loaded into [account. TEMP.CURRENT!]. If the code will be
run in debug mode, a directory [account. TEST] must be set up and the input file must be put in this
directory with the name ELES.INP.

A number of *.com files are included along with the code itself. ELES_SETUP.COM
must be run at some point before the code is run to insure proper directory and file initialization;
this is most simply achieved by adding this file to the LOGIN.COM file and having it execute
automatically with each login. In the [..CURRENT] directory, the file FL.COM is used to compile
an individual subroutine and add/replace it in the object library; it is used as '@FL filename'.
FALL.COM will recompile all subroutines and replace their previous versions in the object library.
To link the governing routine with the object library, type '@LD' and LD.COM will be executed
and a new executable version will be created.

All input filenames must have the extension '.inp' and the names must contain 10
characters or less, excluding the extension. To run the code, type 'MODEC filename without the
filename extension of .inp; for example, typing 'MODEC NTPREGEN' will run NESS with the
input file NTPREGEN.INP and place the output in a file called NTPREGEN.OUT in the output
directory. A file called NTPREGEN_ELES.OUT is also created in the output directory that is
essentially a printout of the input file. If the computer has a debug mode, enter the [account. TEST]
directory and type 'RUN ELES:MODEC.EXE/DEB' and the code will execute using the input file
ELES.INP stored in that directory.
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3.0 REACTOR SYSTEM

This section describes the Westinghouse ENABLER NTP reactor system including its
internal shield, modeling assumptions, and scaling relations.

3.1 Reactor System Description

An engineering description of the ENABLER reactor's major subassemblies is given in the

following sections.
3.1.1 Reactor Assembly

The reactor assembly consists of a nuclear reactor and an actuation system for reactivity
control devices with associated instrumentation and controls are shown in Figure 3-1. The reactor
consists of fuel elements, support elements, a core periphery, support plates and plena, an internal
shield, a reflector assembly, and control drum drive assemblies. Reflector coolant is provided
from the nozzle coolant channel exhausts. The support stem coolant exhaust is mixed with the
reflector coolant flow at the reflector outlet and is used as drive power for the engine turbopump.
The turbine exhaust gas flows through the dome flow baffle, internal shield, plena between the
core support plate and the internal shield and reactor core, and through the reactor core. This gas is
~ heated by the reactor assembly to operating temperatures and exhausted out the nozzle.

3.1.2 Fuel and Support Elements

The fuel elements shown in Figure 3-2 for the ENABLER reactor serve the combined
function of providing the energy for heating both the hydrogen propellant and the required heat
exchanger surfaces. The energy is provided through the fission of 235U contained in the fuel
element. Table 3-1 lists the characteristics of the three fuel materials defined in the NESS code.
Multiple coolant channels coated with ZrC (for graphite and composite) form flow passages
through the elements. The exterior surfaces of the hexagonal fuel elements (except carbide) are
also coated with ZrC. This coating protects the carbon from reaction with the hydrogen propellant.

Longitudinal support for the reactor is obtained by tie-tubes running the full length of the

reactor. These tie-tubes are located inside unfueled support elements, which have the same length
and external dimensions as the fuel elements. A single, large longitudinal hole in these support the
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Figure 3-1. ENABLER (NERVA Type) Nuclear Thermal Rocket Engine
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fuel elements. A single, large longitudinal hole in these support elements contains the tie-tube
assembly, ZrH, moderator, and a porous ZrC insulator. The support element composition is given

in Table 3-1.

Table 3-1. Fuel and Support Element Parameters

Fuel Element . . .

Composition Graphite Composite Carbide
Temperature Range (°K) 2200-2500 2500-2900 2900-3300
Fuel Coated Particle UC.zZC UZnC

Solid Solution and Carbon Solid Solution

Coating C zC —
Unfueled Support Element Graphite ZrC-Graphite Composite C
Composition
Unfueled Element Coating C ZrC —

The reactor core is sized based on an average fuel element power of 1.2 MW per element
and one support element per six fuel elements as shown in Table 3-2 at thrust levels greater than
50,000 pounds. The 1.2 MW per fuel element was demonstrated in the Pewee reactor (402 fuel
elements with a power level of 503 MW) and was the design level for the Phoebus-2A reactor
(4068 fuel elements with a 5000 MW design power level). For the smaller reactors, sufficient
reactivity is obtained by increasing the relative number of support elements to fuel elements, see
Table 3-2, which increases the amount of zirconium hydride moderator to the desired level. Also
to keep a reasonable core length to diameter ratio (<2) for the smaller reactors (15000-25000 Ibf
thrust) the element length was set at 35 inches. At the 25000 thrust level (Pewee size core volume)
the relative power density of the fuel element is the same as the larger reactors (1.2 MW/52 inch).
However, at the lowest thrust level (15,000 1bf) the fuel element power density had to be reduced
in order to obtain a core large enough for criticality.

Table 3-2. Reactor Parameters as a Function of Thrust Level

Thrust (Ibf) 15,000 25,000 >50,000
Reactor Power Range 275-400 460-670 920-6700
Fuel and Support Element Length (inch) 35 35 52
Pressure Vessel Length (inch) 82.6 84 101.6
Fuel Element Power (MW) 0.629 0.808 1.20
Relative Fuel Element Power Density 0.778 1.0 1.0
Ratio of Fuel Elements (N) to Support Elements 2:1 31 6:1
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3.1.3 Radiation Shield

A radiation shield internal to the pressure vessel is used to reduce the gamma and neutron
flux levels in the engine components forward of the reactor. This internal shield limits radiation
leakage through a plane 63 inches forward of the core center, perpendicular to the engine axis, to
the levels given in Table 3-3. This requirement is the same as that used for the NERVA program.
The shield is located immediately upstream of the core support plate, see Figure 3-1. The reactor
internal shields for the thrust levels over 50,000 Ibs. have about 12.5 inches of Borated Aluminum
Titanium Hydride (BATH) and about 1.3 inches of lead. At the lower thrust levels the thickness of
the BATH and lead is slightly reduced due to lower core power density.

Table 3-3. Radiation Leakage Limits at a Plane 63 Inches Forward of the Core Center

Radiation Leakage Limits
Type of Radiation Within Pressure Vessel

Outside Radius
Gamma Carbon KERMA Rate 1.8 x 107 Rad(c)/hr
Fast Neutron Flux 2.0 x 10'2 n/cm?-sec
Intermediate Neutron Flux 3.0 x 1012 nfcm?2-sec,

04 eV <En < 1.0 MeV
Thermal Neutron Flux 6.0 x 10!! n/cm2-sec
En<04ev

3.1.4 Reactor Propellant/Coolant Circuits

In an NTP system, a nuclear reactor supplies the energy to heat the propellant flowing
through the engine. The hot propellant flows into a nozzle that functions in the same manner as a
chemical engine. The reactor in an NTP engine system generally has three propellant (coolant)
circuits as shown in Figure 3-3. The primary circuit is through the central shield and core into the
chamber. This circuit provides more than 90% of the heat to the propellant. All the components
surrounding the core require cooling due to the radiation induced heating and heat transfer from the
primary stream. The propellant cooling of the ex-core components is divided into two additional
circuits: the tie tube (core support) circuit and the peripheral component circuit that includes the
core reflector and extension shield. These circuits along with the nozzle regenerative cooling
circuit provide the first pass through the reactor system for the propellant, which acts as component
coolant. The heat supplied by these secondary circuits provides the energy to power the
turbopump. After passing through the turbine, all the propellant passes thi‘bugh the primary core
circuit and into the nozzle to provide the engine thrust.
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Figure 3-3. Propellant Flow Circuits Through the Reactor
3.2 Baseline Reactor Design

The Rover/NERVA database provides numerous reference designs for reactors and engines
in the size range of 15 KIbf to greater than 250 KIbf thrust range. The engine modeled in the
NESS program is the ENABLER class of NTP engine systems, which is discussed in Ref. 1-4,
that is derived from the nuclear rocket technology developed in the Rover/NERVA programs. The
ENABLER designs incorporates NERVA type fuel elements which are 19 mm (0.75
inch) hexagonal extrusions of graphite based fuel with a 19 coolant channel array within the
element. The code allows the user to select from one of the three fuel materials developed during
the Rover/NERVA program: Graphitic, Composite, or Carbide. The ENABLER engine is
generally specified with fuel elements fabricated from the (U,Zr)C-Graphite composite material
developed late in the Rover/NERVA program, which exhibits improved corrosion resistance and
allows higher operating temperatures and power densities, see Refs. 3-1 and 3-2. Zirconium-
hydride moderator is placed in the core support elements (demonstrated in the Pewee reactor) to
increase the neutronic reactivity and thereby decrease the required uranium fuel loading.

Detailed data is available on the breakdown of actual reactor system component masses. In
the NESS model the core size is based on the number of fuel elements needed to meet the required
power level. The design of the reactor peripheral regions follows the R-1 engine design shown in
Figure 3-4, but the peripheral components are sized according to the core dimensions. For the R-1
reactor shown in Figure 3-4, the nominal core dimensions are 38 inches diameter by 52 inches
long. The components surrounding the core are sized to satisfy structural and neutronic
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requirements. The major components are the core barrel, reflector, pressure vessel, core support
plate, flow baffles, and top shields.

3.3 Reactor Core Design and Thermal-Hydraulic Model

The required core power level is determined from the specified engine flow and chamber
temperature. The core power level and the average allowable heat generation of a fuel element
determines the total number of fuel elements and support elements in the core. Based on the core
peaking factor, a single channel analysis is performed to calculate the thermal and pressure profile
for the peak channel of the peak element in the core. The calculation uses finite increments along
the channel length beginning at the core exit where the chamber conditions are specified. The

governing equations are given below.

The convective heat transfer between the fluid and channel wall is defined by:
qQ=hc Ag(Ty-Tp)

where T, is the channel wall temperature and T, is the coolant gas stagnation recovery temperature.
For small subsonic Mach numbers (<<1.0) the difference between the recovery temperature (T,)
and the fluid free stream bulk temperature (T}) is not significant, so that the equation may be

written as:
q=he Ag(Ty - Typ)

The heat transfer (q) must match the heat generation in the fuel material. The heat
generation in the fuel is determined by the fuel loading, fuel volume, and neutron fluence. For the
purposes of the thermal hydraulic calculations it is sufficient to specify a power profile and the total
power produced by the element. The NESS code uses a cosine power profile typical of that
observed in the NERVA reactors:

P=P,cos(0.891 n (x/L-0.452))

where Py, is the normalized element power factor and x/L is the normalized axial location in the core
measured from the inlet. The peak temperature in the fuel (Tj) is determined from the following
correlations for a heat generating solid with a hexagon array of coolant channels of diameter D and
pitch S:
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v= (§) 0.55133 1n(5) + 0.25(9) —0.23446
2 D S

T,-T, =¥
Kk,

where kg is the thermal conductivity of the solid.

The convective heat transfer coefficient, h, is determined by the McCarthy-Wolf, Ref. 3-3,

correlation:

k T 0.55 0.7
h,=0.025 = Re®* Pt [ -2 | |1+ 0.3(1)
D T D

w

where the fluid properties are evaluated at the fluid bulk temperature. The entrance effect term
(1+0.3(x/D)07)is limited to 1.1 for small x.

As the coolant flows along the channel, it experiences a pressure loss due to wall friction
and fluid acceleration. The momentum equation for one dimensional flow in finite increment form
is:

G? G Ax
P-P, =—" (Vi+1 - Vi)+ f, =— (Vi +v)
g gD

i i i
h

where P; is the coolant pressure at station i, G, is the mass flow per unit area, v; is the specific
volume of the coolant, Dy, is the hydraulic diameter of the channel, f; is the Fanning friction factor,
and Ax is the length increment along the channel. The friction factor is obtained from the Taylor
correlation, see Ref. 3-4, for gaseous flow through a smooth tube:



0.5
- [oome 222 (3)

ew w

where Re,, is a modified surface Reynolds number in which the gas density is evaluated at the fluid
bulk temperature, but the viscosity is evaluated at the channel wall temperature:

“’w TVI
The evaluation of these equations for the peak channel in the core determines the required
core pressure drop.

After the calculation of the core profile and pressure drop, the heat generation rates for the
core peripheral regions are calculated. Because NESS does not have neutronics analysis
capabilities, the heat generation in the peripheral regions is defined as a fraction of the total core
power. After completion of the thermal hydraulics, code control returns to the NESS engine code
for determination of the cycle balance.

3.4 Reactor Weight Model

The reactor mass model divides the reactor system into 53 regions in an R-Z model as
shown in Figure 3-5 and Table 3-4. Each region contains one, or at most a few, components. The
masses of all the components and their constituent parts within a region have been tallied and
converted into a pseudodensity for each region, given in Ref. 3-5. The dimensions of the regions
are based on the core size determined above, with appropriate dimensional dependency algorithms.
The pseudodensity is applied to each region to yield the mass schedule of the reactor for everything
out to and including the pressure vessel. Thrust structure, turbopumps, and nozzle masses are not
calculated in this module; the NESS code determines the balance of engine masses, which is
discussed in Section 2.0.

3.5 Design Variable Options
User inputs can be divided into three categories: engine parameters, reactor parameters, and

fuel element parameters. The primary engine parameters are thrust level, chamber temperature,
chamber pressure, and nozzle expansion ratio. These primary variables are used by the code to
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define the engine specific impulse, propellant flow rate, and required reactor power. The reactor
parameters include reactor pressure vessel material, power fractions in the peripheral components,

and tie tube power levels.

The user supplies the governing parameters for the fuel elements. These include mean fuel
element power, element dimensions, and material. The code modules provides for a choice from
three fuel materials: graphitic (UC, beads in graphite), composite ((U,Zr)C-Graphite), or carbide
((U,Zr)C). Each fuel type exhibits different properties with regard to mass density, power density,
and temperature limits. The fuel to support ratio within the core may be set to one of three patterns:
2:1, 3:1, or 6:1. The fuel parameters are strictly user defined in that the code does not attempt to
judge the validity of the inputs. For guidance, Tables 3-1 and 3-2 provide information on typical
parameters based on the Rover/NERVA technology.

3.6 Key Assumptions

The code assumes that the same basic design will be used at every size level within the
specified code domain. This provides the basis for calculating the size of the core periphery.

The code assumes that the user has specified an attainable combination of input criteria.
For example, the code does not verify core criticality and control span. This cannot be
accomplished until core neutronics is integrated into the code. Similarly, power distribution in the
peripheral regions is based on external data sources such as test measurements.
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4.0 SAMPLE NTP ENGINE SYSTEM DESIGN CASE

A NESS NTP engine design problem is presented in this section. A high performance
hydrogen ENABLER reactor-based NTP engine system is modeled for the sample design case.
Key engine system design parameters are presented in Table 4-1. Key engine system design
assumptions are discussed in Ref. 2-3.

Sample case initialized NESS program input sheet are shown in Table 4-2. A clean set of
input worksheet forms are given in Appendix A. Table 4-3 presents the NESS VAX mainframe
computer input file listing of the sample case. The sample design case output is displayed in Table
4-4.

Table 4-1. Key Sample Case Engine System Design Parameters

Thrust Level 7500. (Ibf)
Cycle Type Expander Cycle
Fuel Type Composite Fuel
Nozzle Exit Area Ratio 500.
Propellant Used LH,

Chamber Pressure 1000. (psia)
Chamber Temperature 4860. (deg R)
Number of Propellant Feed Legs 2
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Table 4-2. Sample Case Input Forms
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Table 4-3. Sample Case Input File Listing
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Table 4-4. Sample Case Output
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5.0 MODEL VERIFICATION/COMPARISON

The sample case NESS NTP engine system design, discussed in Section 4.0, was
compared to past preliminary engine system designs to support in verification of the models. Since
no past detailed ENABLER-based NTP engine system designs are available that incorporate state-
of-the-art engine system technologies, a comparison to similar, but not exact, engine system
designs was undertaken. The 75,000 Ibf, 1000 psi chamber pressure, composite fueled, 2700°K
(4860°R) chamber temperature, 500:1 area ratio nozzle sample case was compared to a similar
Rocketdyne NTP engine system design and a past ELES-NTP engine system design that are
described in References 2-3 and 5-1. The past ELES-NTP engine system design example did not
incorporate an integrated ENABLER reactor system design, but included a reactor system design

that only approximated in matching engine system cycle parameters.

Tables 5-1, 5-2, and 5-3 compare the NESS sample design case to similar Rocketdyne
and/or past ELES-NTP engine system designs. Table 5-1 compares key engine cycle parameters
of the NESS sample case design to the Rocketdyne and ELES-NTP designs. One key observation
is that the NESS design exhibits a delivered Isp of approximately 1% lower than than that
associated with the other designs. This is attributed to the fact that the integrated NESS model
more accurately calculates nozzle cooling losses. It was found that film cooling of the nozzle wall
was required to keep its maximum wall temperature at or under the acceptable limit of 1460°R.
Table 5-4 shows the effect of wall temperature on engine system performance as predicted by
NESS. The ELES-NTP did not properly model this effect. It is unknown if the Rocketdyne
engine design properly represents this integrated design effect. The reduced Isp also increased the

engine system flow rate slightly to offset this effect.

The NESS program also more accurately models the pressure and temperature drops
associated with cooling the nozzle and reactor system. This corresponds to the difference in the
cycle pressures, temperatures, and turbopump operating parameters compared to the other

referenced designs.

Engine system and component weight comparisons are presented in Tables 5-2 and 5-3.
The reactor weight for the NESS design case is reduced 3.6% from the past ELES-NTP design. It
is believed that this reduction in weight (and size) more accurately represents the reactor system
because with the NESS model the reactor is sized to take advantage of heat captured by the coolant
before it enters the reactor. Likewise, the NESS integrated ENABLER reactor system module
more accurately determines the reactor system weight and size for a given design point, when

compared to past modeling methods, see References 2-3 and 5-1.

5-1



Table 5-1 Engine Cycle Parameter Comparison*

Parameter Rocketdyne SA]CN,}IFLES SAIC NESS
Pump Flowrate (kg/s) 36.7 36.9 373
Pump Discharge Pres. (psia) 1,544 1,538.3 2,628.6
Turbine Flowrate, % Pump 50 50 50
Turbine Inlet Temp. (°K) 555.6 555.3 324.3
Turbine Inlet Pres. (psia) 1,412 1,416.8 1,459.6
Turbine Pressure Ratio 1.25 1.295 1.795
Reactor Inlet Pres. (psia) 1,130 1,255.4 1,135.1
Reactor Power, (MW) 1,645 - 1,624.6
Reactor Core Flowrate (kg/s) 36.7 36.9 373
Nozzle Chamber Temp (°K) 2,700 2,700 2,700
Nozzle Chamber Pres. (psia) 1,000 1,000 1,000
Nozzle Exit Diameter (m) 4.15 4.15 4.22
Nozzle Expansion Ratio 500 500 500
Specific Impulse-Vac (sec) 923 9228 912.9
Pump Speed (rpm) 37,500 34913 40,356

* Rocketdyne uses their Mark 25 type axial turbopump (4 stages); SAIC ELES-NTP uscd a
single-stage centrifugal pump; SAIC NESS uscs a 2-Stage centrifugal pump.

Table 5-2. Engine Component Weight Comparison*

Parameter Rocketdyne EL%‘;-IYSTP SAIC NESS

Specific Impulse - Vac (sec) 923 922.8 9129
Reactor (kg) 5,824 5,823 5,208
Internal Shield (kg) — 1,523 1,128
Nozzle Assembly (kg) 440 421 533
Turbopump Assembly (kg) 304 104 138
Nonnuclear Support Hardware (kg) 1,815 1,264 1,495

- Lines, Values, Actuators, Instrumen-

tation Thrust Structure

* Rocketdyne uses their Mark 25 type axial turbopump (4 stages); SAIC ELES-NTP used a

single-stage centrifugal pump; SAIC NESS uses a 2-stage centrifugal pump.




Table 5-3. Detailed Weight Comparison Between NTP-ELES and NESS for the Sample Case

Component Features NTP-ELES NESS No.
Reactor Fuel Type Composite Composite
Reactor + Internal Shield Weight
Reacior Diameits 14500 om 139699 lom,
Reactor Length 102 n 101'5 n
Chamber Temperature n - 1n
4860 deg R 4860 deg R
Chamber Pressure 1000 psia 1000 psia
Propellant Mass Flow (core) 81.32 Ibm/s 82.15 Ibm/s
Nozzle Nozzle Weight 974.7 lbm 1174.68 Ibm 1
*Nozzle Throat (regen cooled) 76.5 lbm 174.5 1bm
*Nozzle (regen tubes) 417.6 Ibm 401.8 1bm
*Nozzle Extension 480.6 Ibm 598.38 Ibm
Arca Ratio 500 500
Throat Diameter 7.38 in 7.43 in
Exit Diameter 163.7 in 166.1 in
Nozzle Length 3242 in 3289 in
Dclivered Vacuum Lap 922.3 sec 912.94 scc
Delivered Thrust 75000 Ibf 75000 1bf
Turbopump Main Pump Turbine Weight 69.9 1bm 71.1 1bm 2
Assembly (TPA) | Main Fuel Pump Weight 196.8 Ibm 200.8 1bm 2
TPA Ignition 32.2 Ibm 32.2 Ibm 2
Misc. Hardware Thrust Mount 1624 Ibm 1684.5 1bm 1
Weight Thrust Support Hardware 1262.6 Ibm 616.66 Ibm 1
Engine Lines 202.7 1bm 210.7 Ibm 2
Main Valve 402.6 Ibm 387.3 Ibm 2
Gimbal System 76.9 Ibm 302.77 Ibm 1
Subtotal Margin (2%) 96.84 Ibm 93.61 Ibm
Total Nonnuclear Weight 4939.25 lbm 4774.32 Ibm
(=TPA+Misc. Hdw+Nozzle+2%)
Total Engine Weight 19439.2 lbm 18744.2 Ibm
System Length 462.2 in 466.4 in
TIW 3.858 4.001

Table 5-4. Effect of Wall Temperature on Performance*

Wall Temperature | Barrier Temperature Isp Fuel Film Cooling
(°R) (°R) (Sec.) Fraction
1460 1630 912.9 0.03
1800 2106 915.9 0.03
2000 2429 917.5 0.02
2400 2892 9194 0.02
2800 3418 921.2 0.02
3000 3651 9219 0.02
3200 3864 9224 0.02

* Corec Temperature = 4860°R (2700°k)




The ELES-NTP reactor system weight was approximated by reading off a reactor power
versus weight graph that can have some inherent inconsistencies. The increase in the NESS
weight for the TPA is due to the more stressing operating conditions in which the turbopumps
must perform to meet the increased pumping requirements of the NESS design when compared to
the others. The increase in the NESS design nozzle weight is attributed to a more accurate nozzle
weight calculation which has been embedded in NESS. The ELES-NTP design approach only
estimated nozzle weight which was done by multiple program runs to represent the various design
portions of the nozzle. These results were then summed together which approximated the engine
weight. NESS now calculates nozzle weight using exact geometric equations from which weight

is determined.

The nonnuclear support hardware weight for weight is somewhat higher for the NESS
design than the ELES-NTP design. The NESS design weight is believed to be more accurate than
the ELES-NTP design weight because it uses true design calculations derived by TRW, see Ref.
1-1, during the past NERVA program effort that have been adjusted for today's technologies, as
discussed in Section 2.2.5. Additionally, the NESS nonnuclear support hardware weight
calculations are more representative of an NTP engine system because it includes options such as
those associated with a gimbal power supply which can be a significant weight factor for long NTP
engine burns and a weight allocation associated with a lower pressure cooldown propellant coolant
feed leg. The past ELES-NTP nonnuclear weight was estimated, based on a percentage of the
reactor weight which was typical of the NERVA flight engine, which has a larger degree of

uncertainty.

Overall engine system thrust-to-weight was determined for the NESS design to be 3.7%
greater than that exhibited by the ELES-NTP design. It is felt that the NESS program accurately
models representative designs of near-term solid core NTP engine systems to support preliminary
design and mission studies.
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6.0 CONCLUDING REMARKS

The NESS preliminary design analysis program characterizes a complete near-term solid
core NTP engine system in terms of performance, weight, and size, and key operating parameters
in detail for the overall system and its associated subsystem. The NESS program incorporates
numerous state-of-the-art engine system technology design options and design features unique to
NTP systems such as a multiple leg turbopump propellant feed system assembly and a low
pressure cooldown propellant coolant feed system, for example. The NESS program is easy to
use and is flexible to address various NTP engine system design options efficiently. Though an
initial validation effort, the NESS program is deemed accurate to support preliminary engine and
vehicle system design and mission analysis efforts.

Development of the NESS program is considered to be one of many key first steps required
to support NTP development. Because of the modular nature of the NESS program, it has great
potential for further upgrades in its design/technology option and analysis capabilities.
Recommended future upgrade activities include: incorporation of other representative reactor
system design modules such as for a particle bed and/or a next generation solid core reactor
system; incorporate an axial turbopump model, include a top-off engine system cycle option and
include a gas generator off-design cycle analysis capability; upgrade performance prediction
correlations; include and upgrade materials option capability which considers radiation
effects/compatibility; perform more detailed analysis code verification; and convert NESS to be
operable on a personal computer. Itis envisioned that NESS could be a key element which could

be integrated into an advanced NTP engine system design workstation.
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